
techniques namely Normal Equation, Levinson Durbin 
Algorithm and Leroux Gueguen Algorithm may be 
employed to reconstruct the lost data. During the last 
decade, overcoming the side issues emerged from 
missing data in control and communication systems are 
prevailed as open research problems for researchers 
[vi].

Perhaps, the best available tool for the linear 
estimation problem is Kalman filtering. Kalman filter 
performs estimation based on noisy measurement data 
and input. Normally in Kalman filter there are two 
steps; (a) predicts the states of a system, (b) then update 
the states using measured data. In case of loss of 
measured data the update step will not be performed 
and the estimation of conventional Kalman filter may 
not be accurate. To remove this drawback, an 
alternative method Open-loop Estimation is used to 
estimate the state of a system [vii]. In Open-loop 
Kalman filter scheme only prediction is performed in 
the absence of data. And when the data reoccurs then 
update is performed. However this scheme produces 
unbounded estimation error, when the data loss occurs 
for an adequate time period [viii-ix]. To estimate the 
state of a system more accurately, an optimal estimation 
techniques is required, which can reduce the estimation 
error to its bound in case of data loss [vi].

As mentioned above, there are three LPCs 
techniques that are used to reconstruct the missing 
measurements. The NE method has been found 
computationally expensive due to involving larger 
matrix inversion in calculating LPCs [v]. The LDA 
avoids the matrix inversions involved in conventional 
Normal Equation method and hence it reduces the 
computational cost. However, LDA suffers from large 
dynamic variety in the values of LPCs [x]. 
Theoretically speaking, it is observed that no limit can 
be made on the value of LPCs computed through LDA 
[xi].

On the other hand, LGA removes the issues 
associated with LDA in a fixed-field by using the 
application of Schwartz inequality in computing LPCs 
through this scheme [x]. The LGA method also avoids 
the inversion of large matrices involved in NE, hence 
reduces computational time. This paper emphasis on 
the implementation of LGA for a Mass-Spring-Damper
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Abstract-Data loss is a frequent dilemma in many 
processes including state estimation. These lost data 
samples are normally reconstructed by employing 
linear prediction theory. Three various linear prediction 
schemes that includes Normal Equation (NE), 
Levinson-Durbin Algorithm (LDA) and Leroux 
Gueguen Algorithm (LGA) may be employed to 
reconstruct the data loss. The NE method suffers from 
high computational complexity. On the other hand, 
LDA is computationally less expensive but it has large 
dynamic range problem in Linear Prediction 
Coefficients (LPCs). The LGA overcomes the 
drawbacks associated with NE and LDA schemes. The 
major contribution of this paper is the reduction of 
computational time raised by NE method by employing 
a modified LGA technique. The upper limit of linear 
prediction filter order is decided by a minimum mean 
square error based algorithm. The simulation results 
are shown by employing this modified LGA on a 
standard Mass-Spring-Damper system.

Keywords-Linear Prediction Schemes, Kalman filter, 
Leroux Gueguen Algorithm, Linear Prediction 
Coefficients, Normal Equation 

I. INTRODUCTION

Linear prediction is in fact a system identification 
process where a signal is reconstructed from its 
previous signal samples [i]. In other words, linear 
prediction is a mathematical and intensification tool for 
estimating the future values of a signal based on its 
previous values (and sometimes input as well). The 
theory of linear prediction has been extensively used in 
a variety of engineering applications [ii]. Its diverse 
range of applications can be found in speech coding, 
speed recognition, model based spectral analysis, 
signal restoration, video coding, model based 
interpolation and impulse/step input detection [iii-iv].

In linear prediction a signal window comprised of 
previous samples is selected to reconstruct the lost data. 
In order to minimize the mean square error, the weights 
are assigned according to their contribution to this data 
[v]. These weights are called linear prediction 
coefficients. Three linear prediction coefficient 
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5. Update cycle
             ; state Estimation

  ; Cov.Estimation

6. Return to step 2

The estimation through Kalman filter is 
summarized in the Algorithm 1. From the above 
Algorithm it is easy to realize the update step is totally 
dependent on measurements. When output data (z ) is k

unavailable, Kalman filter may not result in optimal 
estimation. In such a situation, we used three different 
linear prediction methods for compensating the 
missing output for update step.

III. OPEN LOOP KALMAN FILTERING

In simple words, in OLE when measurement data 
is not available the Kalman filter gain is set to zero, 
which means that no update cycle is carried out as long 
as data is unavailable. Only prediction step is 
performed repeatedly, and when the data reoccurs 
update step will be executed. In OLKF, prediction is 
referred as ''estimation'' [xiii]. OLE has simpler 
structure, so it takes much less time in estimation, but it 
has some disadvantages, which are given below.

1) OLE technique may diverge in practice when 
data loss occurs for long time and it is likely 
that error covariance could exceed the 
limit/bounds if the upper and lower bounds of 
error covariance are provided [viii].

2) When measured data becomes available after 
the loss period, oscillations and/or sharp 
spikes can be observed in the estimated 
parameters [xiii].

3) The steady state values of state and covariance 
are not regained even after recovery of data 
loss. It takes too longer to approach the steady 
state [xiv].

Open-Loop Estimation algorithm is summarized 
as follows.

Algorithm 2: Open Loop KF

1. Initialize

2. Prediction cycle
   ; state estimation
     ; Cov. Estimation

3. Time step update

4. Observation Obtained
z  is not availablek+1

There is no residual innovation and hence Kalman 
gain is not calculated.

            State Estimation
             Cov.Estimation
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system in order to (a) test the performance of LGA 
and(b) provide another platform of handling data. The 
LerouxGueguen Algorithm is a better solution in a non-
variable environment since the scale of intermediate 
variables is bounded [xii]. The core objective of this 
paper is to reduce the computational time in calculating 
LPCs through LGA as compared to NE method.

The rest of paper is organized as follows: In 
Section II, an overview of discrete-time Kalman 
filtering is given. Section III presents the existing 
solution to compensate loss of observation in KF. 
Section IV discusses linear prediction theory wherein 
linear prediction schemes (NE and LGA) are discussed. 
The third linear prediction technique, LDA is not 
discussed in this paper in order to focus attention on the 
core contribution of implementing LerouxGueguen 
Algorithm. In Section V, a numerical example of MSD 
system,its dynamics and also simulation and results are 
shown. The paper is concluded with suggestions in the 
last section.

II. DISCRETE TIME KALMAN FILTERING

Consider following discrete LTI system

(1)
(2)

In the above equations, k   R = {0,1,2,.....} is the 
ldiscrete time instant, x   R  is the input signal, z is the 

nxnmeasurement noise, v is the sensor noise, A   R  is the 
nxlstate transition matrix, B   R  is the input matrix,         

mxn C   R is the output matrix and (x , w , v )  and 0 k k

uncorrelated Gaussian white noise sequences with 
mean (x , 0, 0)  and covariance (P , Q , R ). 0 0 k k

Algorithm 1: Basic Kalman filter

1. Initialize

2. Prediction step
      State estimation
        Covariance Estimation

3. Update of Time-step

4. Observation Obtained

Compute the innovation vector

Compute the innovation Cov. Matrix

Compute the Kalman filter gain equation
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(4)
where

is the authocorrelated matrix, 

(5)
the desired LPCs array, 

(6)
The autocorrelation array with

(7)

and

(8)
From equation (4), the optimal values of the modified 
LPCs are computed.

b.  Modified LerouxGueguen Algorithm 
As discussed before, the earlier schemes, namely 

OLE, modified NE and modified LDA have their own 
limitations. Therefore, a strategy is required which 
could answer to these limitations handsomely. In this 
paper LerouxGueguen Algorithm has been believed to 
overcome these limitations. In order to reconstruct the 
data required in measurement update

Fig. 1. Flow chart of the proposed scheme
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5. Return to step 2

Due to the aforementioned limitations, a robust 
technique is required to improve estimation with 
limited error covariance in case of data loss. In order to 
suit the problem of data loss, the existing linear 
prediction methods [i] are amended by providing 
minimum mean square error based algorithm that 
decides the upper bound of filter order.

IV. LINEAR PREDICTION METHODS

According to linear prediction theory the future 
values of a discrete time signal are estimated as a Linear 
combination of the present and past samples of the 
signal. The missing samples can be reconstructed from 
its previous M samples using the following equation.

(3)

where  is the measured signal or compensated  
observation, M represents Linear Prediction Filter 
Order and parameter represents the weights assigned to 
the previous observations according to their 
contribution and are known as LPCs.  LPCs can be 
computed using various methods but some optimal 
methods are Normal Equation, Levinson Durbin 
Algorithm and LeurouxGeugeun Algorithm. In routine 
practice, no strategy is available to decide the value of 
`M` in NE, LDA and LGA. However, some theoretical 
bound is always required to decide the threshold limit 
on the value of `M`. Hence, the word "Modified" is 
frequently adopted to these schemes such as one is 
shown in Algorithm 3.

Algorithm 3: Choice of the LPFO 

1. Trace

2. Initialization

3. Recursion = 2, ...,M
Obtain   using Equation 3.
Calculate measurement updated state estimation 

  based on this compensated observations.
Compute
Check Is 
Yes         :order of the LP filter
Otherwise

4. Repeatstep 3.

a. Normal Equation Method
The Normal Equation derivation is actually based 

on the minimization of the mean square error. In 

Normal Equation method LPCs    are calculated as 

Technical Journal, University of Engineering and Technology (UET) Taxila, Pakistan            Vol. 20 No. I-2015

Initialize

Prediction

LPCs using
NE or LGA

No
Check

Availability of
observation

available
Compensated KF

Normal KF

Update



Fig. 2. Mass-Spring-Damper system

In the Fig. 2, u(t) is control input, k  and k  are 1 2

spring constants, b  and b  are coefficients of viscous 1 2

damping, m  and m  are masses, and x  and x  are the 1 2 1 2

displacements of masses m  and m  respectively. The 1 2

dynamics of MSD system are described by the 
following mathematical equations:

(9)

where the state vector consists of displacement and 
speed of two masses m  and m  and is described as1 2

and

(10)

The MSD system disturbance and sensor noise 
dynamics are described as E[w(t)]=0, E[v(t)]=0. By 
substituting the values of parameters m = m = 1, k = 1 2 1

1,k = 0.15, b = b = 0.1 and sampling interval is T  = 2 1 2 s

1ms. Hence, the above matrices will become

In the subsequent subsection, the OLKF, modified 
NE and modified LGA are implemented to the above 
MSD system and results are discussed in the following 
paras. In the modified NE and LGA schemes, the 
missing measurement samples are reconstructed by 
using linear prediction schemes and hence the 
estimation error is less as compared to OLKF when 
data loss occurs.
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Algorithm 4: Modified Leroux Gueguon Algorithm

1. Initialization 

2. Threshold Error
Set the value of threshold error E  .th

3. Recursion i={1,2,3,…, M} where M=LPFO
th3.1 Compute the i  reflection coefficients as 

Stop when  i  =  M.
3.2 a) Compute the error signal  

b) Is 

Yes; stop the process M I 
3.3 Compute the values of   parameters 

Update               and

Repeat Step 3.1

step of Kalman filter, LGA is integrated with the 
Kalman filtering process. It computes reflection 
coefficients without dealing directly with LPCs from 
the autocorrelation matrix. LGA also reduces the 
computational cost of NE method. A Modified LGA is 
given in following algorithm.

The values of  are used to calculate the LPCs. As 
the intermediate variables having bounded values so 
LGA technique depicts better performance in fixed-
point environment. LGA has also a problem that it 
returns only RCs, which is not a major concernif the 
filter is in lattice form [x]. In order to test the 
performances of NE and LGA (i.e how better these 
techniques could reconstruct the data), these schemes 
are integrated with the conventional Kalman filter as 
shown in the subsequent section. 

In the following section, the theory presented for 
proposed schemes is tested on a well-known numerical 
example of Mass-Spring-Damper system.

V. NUMERICAL EXAMPLE OF MASS-SPRING-

DAMPER SYSTEM

The section presents 1) the dynamics of a simple 
second order mechanical system i.e. Mass-Spring-
Damper system and 2) the simulation results for the 
three under discussion schemes.

A.  Dynamic of MSD
In this subsection, a simple second order 

mechanical system namely Mass-Spring-Damper 
system is demonstrated. Such systems are commonly 
control experimental devices frequently encountered in 
many technical laboratories [xiv].
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Fig. 5. Estimation of Position for Mass 2 through 
modified NE

Since in modified NE, the LPCs are computed 
using inversion of large matrices (of order M   M, where 
M is decided by Algorithm 3), therefore it is 
computationally expensive.

Fig. 6: Performance of LGA

Similarly, the estimation of state 2, shown in Fig. 6, 
has been achieved using modified LGA, which is the 
main contribution of this paper. It can be seen that the 
estimated result (dashed line) of the modified LGA 
tracks the actual position (solid line) and does not 
diverge significantly as compared to OLE and modified 
NE methods. Since LGA avoids the inversion of large 
matrices, it is computationally inexpensive than NE 
method. This claim can be verified from Table I. In 
addition, modified LGA also overcomes the issue of 
large dynamics range in a fixed point environment 
which is raised in LDA scheme.

Fig. 7: Open Loop Estimation for data loss from 3.7  
3.9 sec

In order to view broader spectrum of modified
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B. Simulation and Results
In the simulations, the results obtained for OLKF, 

modified NE and LGA with the data loss are compared. 
The sampling time period is T  = 1ms. Data loss occurs s

from 2.4 to 2.7 s. In all results, the solid line shows the 
actual state and the dashed line shows the estimated 
state.

In Fig. 3, the four associated states are shown for 
the open-loop scheme along with actual states. It can be 
seen that during the data loss period, OLE betrays from 
the actual state track prominently. The data loss region 
is highlighted in Fig. 4.

This is because, no update step is performed in 
OLKF in the event of data loss, and therefore it is 
computationally less expensive. After performing 
simulation for 100 times on a system Core i3-3110M 
CPU @ 2.40GHz - 2.40GHz, RAM 2.00GB, 64-bit 
Operating System; the mean time taken by OLKF is 
2.4128 s in case of data loss from 2.3 to 2.8 s.

Fig. 3. Performance of Open Loop Estimation

Fig. 4. Highlighted view of data loss region

The estimated four states associated with MSD 
system are obtained using modified NE method. In 
order to grasp clear taste of the modified LGA scheme, 

nd only 2 state (for which measurement data is available) 
has been analyzed in this paper. Its estimation through 
modified NE method is shown in Fig 5. It can be 
verified that modified NE method, at the cost of 
computational efforts, provides better estimation 
results than OLE scheme.
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Fig. 11. Computational time comparison of NE and 
LGA for different LPFO

TABLE I

COMPUTATION ANALYSIS FOR NORMAL EQUATION 

AND MODIFIED LGA

VI. CONCLUSION

Earlier methods adopted to deal data loss scenarios 
in state estimation have shortcomings such as more 
computational time and large errors. OLKF takes much 
less time but it has unbounded error. Alternatively NE 
method reduces the error but it takes more 
computational time in calculating LPCs. In this paper, a 
modified version of a particular Linear Prediction 
technique namely, LerouxGueguen Algorithm has been 
presented to handle these two shortcomings. The 
proposed scheme avoids the inversion of large 
matrices, hence is computationally effective. LGA also 
improves the performance of OLKF by bounding the 
error during the data loss. A minimum mean square 
error based criteria is set to decide the order of linear 
prediction filter. Hence LGA is considered an optimal 
technique to compute LPCs in case of data loss.
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scheme, LGA is tested for data loss at various locations. 
In this connection, Figures 7-11 show the performance 
of OLE, modified NE and modified LGA scheme 
respectively.

It has been considered necessary to present error 
analysis for the three under discussion schemes (OLE, 
modified NE and modified LGA), Fig. 10 shows the 
absolute error analysis. Truly speaking, modified NE 
and LGA provide significantly small error than OLE 
during the data loss period.

Fig. 8. Estimation through NE for data loss              
3.7 - 3.9 sec

Since this paper focuses on the performance of 
modified LGA method compare to OLE and NE,   
Table I and Fig. 11 describe the cumulative 
computational time for modified NE and LGA schemes 
in tabulated form and graphically. As discussed in 
previous Figures, OLE abruptly diverges and hence 
suffers from large errors. Normal Equation method, on 
the other hand, is computationally expensive. The 
modified LGA overcomes both of these problems and 
hence provide better estimation results.

Fig. 9. Performance of LGA for data loss 3.7  3.9 sec

Fig. 10: Error Comparison a) Open-Loop Estimation, 
b) Modified NE, c) Modified LGA
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